# Mechanisms of Enzyme Regulation

- Substrate concentration
- Reversible inhibition by products or other compounds
- Allosteric activation or inhibition
- Proteolytic cleavage
- Covalent modification
- Modulator protein binding
- Amount of enzyme present

# Substrate influence.

The rates of most enzymes are responsive to changes in substrate concentration because the intracellular level of many substrates is in the range of the  $K_m$ . Thus, an increase in substrate concentration prompts an increase in reaction rate, which tends to return the concentration of substrate toward normal.

**Product inhibition.** If the product accumulates, it can inhibit some enzymes. This form of control limits the rate of formation of the product when the product is underused. Besides you can remember that Enzymes do not affect equilibrium constants. It means that increasing product concentration causes to increasing reverse reaction and decreasing substrate formation.

# Allosteric regulation of metabolic pathways.

The activity of enzymes that catalyze key regulatory reactions (**committed steps**) of metabolic pathways are often subject to allosteric regulation. Their activity can be **modulated by the binding of allosteric effectors** to a site on the enzyme that is distinct from the active site (i.e., allosteric site).

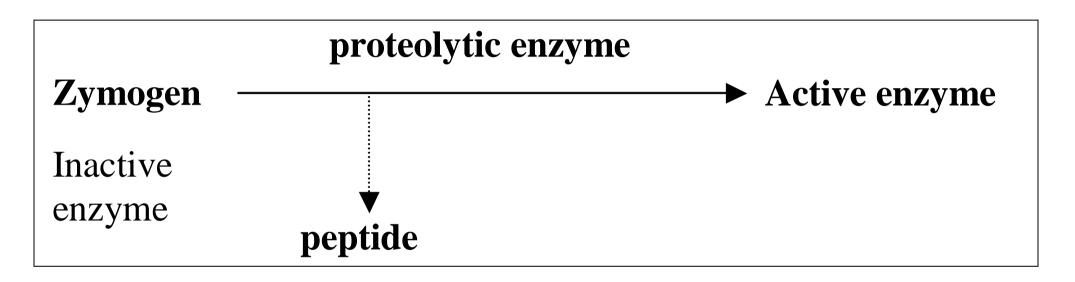
**1. Effectors** are positive if they enhance the rate of a reaction (i.e., activators) and negative if they decrease the rate of reaction (i.e., inhibitors).

**2. Feedback inhibition** is negative modulation of the committed step of a metabolic pathway by its end product. This prevents unnecessary production of an excess of end product by shutting down the pathway until more is needed.

# **Covalent modification**

# **1. Phosphorylation**

- a. Effect on enzyme activity. In certain enzymes, the addition of a phosphate group to a specific amino acid residue [usually serine (Ser), tyrosine (Tyr), or threonine (Thr)] by specific protein kinases dramatically enhances or depresses activity.
- **b.** This modification is reversible. The phosphorylated enzyme may be dephosphorylated by specific phosphatases.


# 2. Nucleotidylation

- **a.** Effect on enzyme activity. The activities of certain enzymes are regulated by the reversible addition of a nucleotide (e.g., adenosine) to a specific amino acid.
- **b.** This modification is reversible. For example, an adenylated enzyme may be deadenylated by a specific enzyme.

**3. Proteolytic cleavage.** Certain enzymes are synthesized as **proenzymes**, or **zymogens**, which are inactive forms of enzymes that become active only after being cleaved at a specific site in their polypeptide chain by specific **proteases**.

- a. Many digestive enzymes that
  hydrolyze proteins (e.g., trypsin,
  pepsin) are synthesized as zymogens in
  the stomach and pancreas.
- **b. Blood clotting** is mediated by a series of proteolytic zymogen activities of several serum enzymes

# **The partial cleavage of enzyme precursor** (proteolytic cleavage)



### MECHANISMS FOR REGULATING ENZYME ACTIVITY

| Regulator event              | Typical     | Results                                        | Time required for |
|------------------------------|-------------|------------------------------------------------|-------------------|
|                              | effector    |                                                | change            |
| Substrate availability       | Substrate   | Change in velocity                             |                   |
| Product inhibition           | Product     | Change in V <sub>m</sub> and/or K <sub>m</sub> | Immediate         |
| Allosteric control           | End product | Change in V <sub>m</sub> and/or K <sub>m</sub> | Immediate         |
| Covalent modification        | Another     | Change in V <sub>m</sub> and/or K <sub>m</sub> | Immediate to      |
|                              | enzyme      |                                                | minutes           |
| Dissociation/association of  | Second      | Change in V <sub>m</sub> and/or K <sub>m</sub> | Immediate         |
| regulatory protein           | messengers  |                                                |                   |
| (modulatory protein binding) |             |                                                |                   |
| Synthesis or degradation of  | Hormone or  | Change in the amount of the                    | Hours to days     |
| enzyme                       | metabolite  | enzyme                                         |                   |

# **ISOENZYMES (ALSO CALLED ISOZYMES)**

**Definition.** Isozymes are different molecular forms of enzymes that may be isolated from the same or different tissues.

Most isoenzymes are enzymes that catalyze the same reaction but differ in their physical properties because of genetically determined differences in amino acid sequence. Isoenzymes may contain different numbers of charged amino acids and may be separated from each other by elec-trophoresis. Different organs frequently contain characteristic proportions of different isoenzymes.

<u>Clinical use</u>. Analysis of the distribution of isozymes of particular enzymes is sometimes a useful tool in clinical diagnosis.

| Lactate                             | Subunits |
|-------------------------------------|----------|
| Dehydrogenase                       |          |
| Isozyme                             |          |
| $I_1$ ( $\uparrow$ under myocardial | нннн     |
| infarction)                         |          |
| l <sub>2</sub>                      | НННМ     |
| <b>I</b> <sub>3</sub>               | ННММ     |
| <b>I</b> <sub>4</sub>               | HMMM     |
| l <sub>5</sub>                      | MMMM     |

# Serum enzyme levels

**1. Description.** Many enzymes are present in serum, and their activity can be easily assayed without purification.

**2. Clinical use.** Elevation or depression of the levels of activity of specific enzymes may indicate either the presence of a disease or damage to a specific tissue.

#### Principal serum enzymes used in clinical diagnosis. Many of the enzymes are not specific for the disease listed

| Serum Enzyme                     | Major Diagnostic Use        |
|----------------------------------|-----------------------------|
| Aminotransferases Aspartate      | Myocardial infarction Viral |
| aminotransfer-ase (AST, or       | hepatitis                   |
| SGOT) Alanine aminotransferase   |                             |
| (ALT, or SGPT)                   |                             |
| Amylase                          | Acute pancreatitis          |
| Ceruloplasmin                    | Hepatolenticular degenera-  |
|                                  | tion (Wilson's disease)     |
| Creatine kinase                  | Muscle disorders and myo-   |
|                                  | cardial infarction          |
| γ-Glutamyl transpeptidase        | Various liver diseases      |
| Lactate dehydrogenase            | Myocardial infarction       |
| (isozymes)                       |                             |
| Lipase                           | Acute pancreatitis          |
| Phosphatase, acid                | Metastatic carcinoma of the |
|                                  | prostate                    |
| Phosphatase, alkaline (isozymes) | Various bone disorders, ob- |
|                                  | structive liver diseases    |

#### **Enzymes as diagnostic reagents**

**1. Description.** Many purified enzymes are now commercially available for use in the determination of components in blood and tissues. Such enzymatic assays are usually more specific, more sensitive, and faster than chemical determinations.

**2.** Clinical use. Examples of clinically relevant compounds that can be determined enzymatically include glucose, urea, ethanol, and triglycerides.

# Use enzymes as analytical reagents

| Glucose oxydase     | Determination of serum glucose level     |
|---------------------|------------------------------------------|
| Cholesterol oxydase | Determination of serum cholesterol level |
| Lipase              | Determination of triacylglycerol level   |
| Urease              | Determination of serum urea level        |